Menoufia University
Faculty of Engineering, Shebin El-Kom
Production Engineering and Mechanical
Design Department
Final Exam, $2^{\text {nd }}$ semester, 2017-2018
Date of Exam: 19/5 / 2018

Answer the following questions

Question One

A - A company wants to have a variable sampling plan that will not accept a shipment of polyester material, more than 10% of the time, if the lot average tensile strength is 95 psi or less. In the meantime, this company would like to have at least 95% of chance to accept a submitted lot with mean strength of 115 psi or more. The standard deviation of this polyester material is given as 20 psi. $\mathrm{AQL}=115 \mathrm{psi}, \mathrm{RQL}=95 \mathrm{psi}$, alpha $=5 \%$, beta $=10 \%$
Find sample size, n, and acceptance level, if the sample has an average tensile strength less than the acceptance level, the lot is rejected; otherwise, it is accepted. (a1) (b2) (15 Marks)

B - A company wants to have a variable sampling plan that can be used to determine the disposition of lots of polyester material which has a lower specification limit of 90 psi . The plan shall not accept, more than 10% of the time, a lot with a fraction nonconforming that is 8% or more. In the meantime, it would like to have at least 95% of chance to accept a submitted lot with a fraction nonconforming of 1% or less. The standard deviation of this polyester material is given as 20 psi . $\mathrm{LSL}=90 \mathrm{psi}, \mathrm{AQL}=\mathrm{p} 1=1 \%, \mathrm{RQL}=\mathrm{p} 2=8 \%$, alpha $=5 \%$, beta $=10 \%$ Find the sample size n, mean and the critical distance K. (a2) (b2) (15 Marks)

(20 Marks)

Question Two

A - Explaining Changes in the OC Curve - Effects of Increasing Sample Size While Holding Acceptance Number Constant - Effects of Increasing Acceptance Number While Holding Sample Size Constant
B - Construct the $A O Q$ curve for $N=500, n=10$, and $c=1$. Let values of p vary from .05 to .40 in steps of .05. Find AOQL
(a1) (b2) (15 Marks)

PROPORTION DEFECTIVE, p										
n	x	.05	.10	.15	.20	.25	.30	.35	.40	.45
10	0	.5987	.3487	.1969	.1074	.0563	.0282	.0135	0060	.0025
$c=1$	1	.9139	.7361	.5443	.3758	.2440	.1493	.0860	.0464	.0233
\rightarrow	2	.9885	.9298	.8202	.6778	5256	.3828	.2616	.1673	.0996
	3	.9990	.9872	.9500	.8791	.7759	.6496	.5138	.3823	.2660

(30 Marks)

Question Three

A company wants to have a single sampling plan that will not accept, more than 10% of the time, material that is 8% defective or worse. In the meantime, this company would like to have at least 95% of chance to accept a submitted lot with 1% or less nonconforming. $\mathrm{AQL}=\mathrm{p}_{1}=1 \%$, Producer's risk, $5 \%-$ RQL $=$ p2 $=8 \%$, Consumer's risk, 10%

A - Find sample size, n, and acceptance level, c.
B - Draw the OC curve associated with the selected plan
(b2) (15 Marks)
(a2) (15 Marks)

c acceptance level	$p_{1} n$ $(\mathrm{~Pa}=0.95)$	$p_{2} \boldsymbol{n}$ $(\mathrm{~Pa}=0.10)$	p_{2} / p_{1}
0	0.051	2.30	45.10
1	0.355	3.89	10.96
2	0.818	5.32	6.50
3	1.366	$6.68=$	4.89

Question Four

(20 Marks)
A manufacturer receives large batches of components daily and decides to institute an acceptance sampling scheme. Three possible plans are considered, each of which requires a sample of 30 components to be tested:
Plan A: Accept the batch if no non-conforming components are found, otherwise reject.
Plan B: Accept the batch if not more than one non-conforming component is found, otherwise reject.
Plan C: Accept the batch if two or fewer non-conforming components are found, otherwise reject.
A -For each plan, calculate the probability of accepting a batch Containing (i) 2% nonconforming (ii) 8% non-conforming.
(al) (b2) (10 Marks)
B - Without further calculation sketch on the same axes the operating characteristic of each plan. (a1) (5 Marks)
C - Which plan would be most appropriate in each of the circumstances listed below? (b7) (c4) (5 Marks)
(i) There should be a high probability of accepting batches containing 2\% non-conforming.
(ii) There should be a high probability of rejecting batches containing 8% non-conforming.
(iii) A balance is required between the risk of accepting batches containing 8% defective and the risk of rejecting batches containing 2% non-conforming.

Members of course examination committee.

Prof. Dr.. Mohamed Fattouh
Course coordinator
Associ. Prof. Dr. M. Sharaf
Assist. Prof Dr. Amal Mongeda
Assist. Prof Dr. Omyma Nada

With our best wishes

This exam measures the following ILOs									
Question Number	$\begin{aligned} & \mathrm{Q} 1-\mathrm{A} \\ & \mathrm{a}-\mathrm{B}, \\ & \mathrm{Q} 4-\mathrm{A}, \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Q}_{1}-\mathrm{B}_{1}} \\ & \mathrm{Q} 3-\mathrm{B}_{1} \end{aligned}$			$\begin{gathered} \mathrm{Q} 1-\mathrm{A}, \mathrm{~B} \\ \mathrm{Q} 2-\mathrm{B} \\ \mathrm{Q} 3-\mathrm{A}, \mathrm{Q} 4-\mathrm{A} \end{gathered}$, Q4-C	Q2-A	Q4-C	
Skills	a1	a2	a3	b1	62	b7	C3	C4	
	Knowledge \&Understanding Skills			Intellectual Skills	Intellectual Skills		Professional Skills		

